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A simple method to determine a partition line from chaotic time series with a driven frequency
is devised, so that the embedded strange attractor can be divided effectively by the partition line.
After the determination of grammatical rules, symbolic dynamics is established from the chaotic
time series. The symbolic dynamics provides a global systematics of unstable periodic orbits within
the strange attractor. With the global property, the symbolic dynamics is applied to find unstable
periodic orbits and predict the chaotic time series with finite accuracy and symbolic sequences with

high accuracy.

PACS number(s): 05.45.4+b, 47.52.+j
I. INTRODUCTION

Since Lorenz [1] found a strange attractor in a model
to simulate the Earth’s atmosphere, chaotic motion has
been observed in many experiments, for example, the
Belousov-Zhabotinskii reaction [2], the CO, laser [3], and
the NMR oscillator [4]. The reconstruction of strange at-
tractors from chaotic time series [5-7] has by now become
a routine procedure. It results from an inverse problem
of nonlinear dynamics and is different from the classical
stochastic analysis of time series. This method enables us
to apply the theory of dynamical systems [8] to analyze
chaotic behavior in an experimental system without any
prior knowledge on the governing equations or relevant
degrees of freedom.

Being a coarse-grained description [9], symbolic dy-
namics is one of the popular methods used in studying
chaotic behavior in low-dimensional dissipative systems.
It provides a description of the site of unstable periodic
points within strange attractor in a Poincaré section and
gives a rigorous way of understanding their global sys-
tematics [10,11]. In terms of symbolic sequences that
encode the periodic orbits in a one to one correspon-
dence, topological property shared by a universal class
of dynamical systems can be studied conveniently. The
topological analysis is based on describing the knotted
relation of the periodic orbits in phase space [12]. A
template can be used to present the global organization
of the knotted periodic orbits [13]. Symbolic dynamics
includes two main aspects: first, a symbolic description
of orbits by dividing the phase space into a number of re-
gions with different symbols; second, an affirmation of the
admissibility for each permutation of finite symbols by
determining grammatical rules for symbolic sequences.

Recently, the validity of the extended Bloch-type laser
(EBL) model for a chaotic NMR laser has been demon-
strated by comparing structures of strange attractors and
periodic orbits in the delay Poincare section between the
model and the experiment [14]. A binary partition line
is determined approximately by distinguishing 15 peri-
odic points up to order 9 in a one to one correspondence.
However, this is only a symbolic description of the peri-
odic orbits. The symbolic dynamics for the EBL model
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has been given in Ref. [15], where a partition line of the
z-y plane is determined from the tangencies of forward
and backward foliations. The ordering rules and admis-
sibility condition are constructed and the allowance or
forbiddance of periodic sequences up to order 9 and not
greater than RL3R?L in the U sequence is determined.
But this method of establishing symbolic dynamics de-
pends on models, and is not effective for chaotic time
series.

The method for the determination of a partition line
from chaotic time series in Ref. [14] is very complicated.
In particular, the partition line is only effective to distin-
guish finite periodic orbits but not to divide the strange
attractor. So, up to now, establishing symbolic dynamics
from chaotic time series and applying it to analyze the
time series have not been discussed.

This paper addresses the above questions by using
chaotic time series from the EBL model and is organized
as follows. In Sec. ITA we devise a simple method to
determine a partition line from the time series, so that
the strange attractor is divided effectively by the parti-
tion line. In Sec. IIB we determine grammatical rules
and establish symbolic dynamics from the time series. In
Sec. IIT A we display the global systematics of periodic
orbits and apply the symbolic dynamics to find unstable
periodic orbits. In Sec. IIIB we apply the symbolic dy-
namics to predict the time series and symbolic sequences.
Finally, in Sec. IV we offer the summary and conclusion.

II. ESTABLISHING SYMBOLIC DYNAMICS
FROM CHAOTIC TIME SERIES

A. Determining a partition line

The EBL model for a chaotic NMR laser in the
rotating-frame approximation is described by

z=oly—z/(1+ Acoswt)],
= —y(1+ ay) + rz — z2, (1)
z = —bz +zy,

L.
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where, as given in Ref. [14], the parameters are o = 4.875,
A = 0.018, w = 0.03168 , a = 0.2621, » = 1.807, and
b = 2 x 10~%. The equations we used in actual calcula-
tion are scaled from Egs. (1) by setting (z,y, z,t,w) —
(zz*, yy*, z2*,t/x* ,wz*), where z* = y* = [b(r — 1)]/2,
z* = r — 1. We integrate the equations using a fourth-
order Runge-Kutta method with a fixed time step of
T/1000 (T = 27 /w is a period of the forcing) and pick
up a set of initial points in the phase space at time
to = T/].O.

zo = Yo(1 + A coswtyp),
Yo = 1.2+ 0.005 (i=1,2,...,200), (2)
z0 = 1.

After discarding the first 20 periods to allow each trajec-
tory to fall in strange attractor, we recode chaotic time
series y(t) from trajectories of the following 50 periods.

For the periodically driven system, as given in Refs.
[14,16], we determine delay time v = T/5, so that the
leafs within the strange attractor in the delay Poincaré
section [y(t),y(t + 7); @] for each phase ¢ are noninter-
sected.

The strange attractor is embedded in an m-
dimensional phase space by constructing vectors of the
form X = {y(t),y(t + 7),...,y(t + (m — 1)7)} from
the time series. We first make a choice of the embed-
ding dimension m=6, which is the minimal integer for
m > 2Dq + 1, as given in Ref. [14]. The method of close
returns [17] with integer multiples of the driven period
T is used to locate shadowing unstable periodic orbits.
When an initial phase ¢ is chosen to be T'/10, the cycles
up to order 8 with symbolic sequences not greater than
RLR in the U sequence are found. Since the requirement
of embedding dimension in the theorem [6,7] is only a suf-
ficient condition for the embedding of an attractor, the
embedology can be applied in the phase space whose di-
mension m is less than 2D, + 1. We also find the cycles
in the embedding spaces with dimensions 4 and 5.

The stability of each orbit is estimated from a linear
approximation of the dynamics at a periodic point us-
ing nearby trajectories [18,19]. The nontrivial elements
in the Jacobian matrix of the delay Poincaré map with
the driven period T are determined by using the meth-
ods of singular value decomposition of a matrix and the
generalized inverse matrix. From the time evolution op-
erator of the periodic orbit, we can determine eigenval-
ues and eigenvectors at each periodic point in the de-
lay Poincaré section. For the eigenvalue A > 1 (< 1),
we plot a short line with the horizontal projection 0.1
(0.05) from the periodic point in the delay Poincaré sec-
tion along the corresponding unstable (stable) eigenvec-
tor direction. All periodic points up to order 8 with two
short lines are displayed in Fig. 1. Figure 2 is a blowup
of the boxed region in Fig. 1. We can infer a line, that
divides the strange attractor in the delay Poincaré sec-
tion into two parts from the following observation. In
the upper (lower) part, which is marked by L (R), the
rotation of an acute angle from the unstable eigenvector
direction to the stable eigenvector direction is clockwise
(counterclockwise). Thus there is a point in each leaf
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FIG. 1. All points of periodic orbits up to order 8 with
their eigenvector directions and strange attractor with the
partition lines Ce and Ce in the delay Poincaré section

[¥(?),y(t + 7); T/10].

within the strange attractor where the stable and unsta-
ble eigenvectors direction are parallel to each other, i.e.,
the acute angle between the stable and unstable eigen-
vector directions is zero. Since the stable and unstable
eigenvectors display the directions of forward and back-
ward foliations passing through the point, the point is
one of the homoclinic tangency points between forward
and backward foliations.
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FIG. 2. A blowup of the boxed region in Fig. 1. The five
homoclinic tangency points (¢1 — ¢5) in the partition line Ce
are labeled by squares.
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After having an estimated local region where the tan-
gency point in the leat exists, we can further determine
the angle between eigenvector directions at a given point
in the region using the forward and backward maps con-
structed from the time series. It is based, in general, on
the convergence of the eigenvector directions at a given
point in the limit of long orbit segments and the yield
of an invariant direction field for the map [20,21]. We
can select a point where the acute angle between sta-
ble and unstable eigenvector directions is very small as
an approximation to the tangency point. In Fig. 2, five
backward foliations have been identified in the strange at-
tractor and a piecewise linear curve passing through the
five tangency points approximates a partition line. To
divide the strange attractor in the delay Poincaré section
for establishing symbolic dynamics, the partition line has
higher accuracy than that given in Ref. [14].

So far, we have devised a simple method to determine
a partition line from chaotic time series with a driven
frequency so that the embedded strange attractor can be
divided effectively by the partition line. It is based on
the hyperbolic periodic points being in the invariant man-
ifolds and their stable and unstable eigenvectors display-
ing the stable and unstable manifolds passing through
the periodic points.

B. Determining grammatical rules

After the partition line is determined, each point of
the delay Poincaré map is encoded by the letter R
or L. Thus a point of a chaotic orbit in the delay
Poincaré section corresponds to a doubly infinite sym-
bolic sequence composed of the letters R and L, i.e.
S=---8_,,-++8_150®8182 S, -+, Where s,, is the code
for the nth point of the forward orbit and s_,, the code
for the mth point of the backward orbit. The present
point is indicated by sge. The solid dot divides the dou-
bly infinite sequence into two semi-infinite sequences, i.e.,
the backward sequence ---S_,,---s_18¢0® and the for-
ward sequence @818y -+ Sy, + - .

According to the distribution of leafs within the
strange attractor that display backward foliations, we can
determine the ordering rules. Since the structure of the
strange attractor in the delay Poincaré section is similar
to that of Hénon map, we introduce the ordering rules
of Hénon map with positive and negative values of the
determinant of the Jacobian matrix, respectively. They
have the same ordering rule for forward sequences, which
is described as

eER--->eEL--- ,6OR--- < ¢OL---, (3)

and different ordering rules for backward sequences,
which are respectively described as

...RE.>...LE.’...RO.<...LO. (4)
and
..._RE/.>...LE/.,...RO/.<...LO/.’ (5)

where the common leading strings £ (E') and O (O')
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consist of letters R and L and contain an even and an
odd number of the letter R (L), respectively.

It is convenient to express the ordering rules in terms
of a metric representation by real numbers in [0, 1]. First,
we assign an integer €; = 1(—1) to a symbol s; when it is
L (R). Then, for the ordering rule (3), we assign to the
forward sequence es;s;--- s, --- a number

(o o}
o= Zpﬂ“, (6)
=1
where
0 if Hej =1,
J=1
1 if Hej = —1.
=1

Similarly, for the ordering rule (4) or (5), a number 3
assigned to the backward sequence ---5_,,---s_1sge® is
defined by

Hi =

B=> w2, (7)

=0

where

0 ifH €e_; =1orif H(—e_j) = —1,
i=0 i=0

1if J[Jes=—1orif [[(-e-;) =1
=0 =0

V; =

In this representation a doubly infinite symbolic se-
quence corresponds to a point in the unit square of the
a-f symbolic plane. The forward and backward folia-
tions become vertical and horizontal lines, respectively.
A point on the partition line Ce may symbolically be
represented as QC e X P (X stands for L or R, P or Q
stands for a string consisting of R and L). A rectangle
enclosed by the lines QRe, QLe, ¢ X P, and e RL*> forms
a forbidden zone in the symbolic plane. Each tangency
point on the partition line rules out a rectangle in the
symbolic plane. The union of the forbidden rectangles
forms the fundamental forbidden zone, whose boundary
is the pruning front.

Each approximated tangency point is near an exact
one, so there is a difference between the symbolic se-
quence of the tangency point and that of its correspond-
ing exact one. However, it does not influence the deter-
mination of the ordering rules; in other words, the fun-
damental forbidden zone in the symbolic plane is robust.
For the ordered foliations in the delay Poincaré section
in Fig. 2, the values of o and 8 in the upper (lower)
region of the fundamental forbidden zone are monotoni-
cally changed from the tangency point c¢; to c¢s along the
partition line Ce. According to the ordering rules (3)
and (4), and (3) and (5), we draw fundamental forbid-
den zones in Figs. 3(a) and 3(b), respectively. In Fig.
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3(b), from c; to c5 along the partition line Ce, the value
of a is monotonically increased in the upper region of
the fundamental forbidden zone, but the value of 3 is
monotonically unchanged. In Fig. 3(a) the values of a
and B are monotonically increased in the upper region of
the fundamental forbidden zone from ¢; to c¢s along the
partition line Ce. So we take ordering rules (3) and (4)
to establish symbolic dynamics.

When the foliations are ordered by using the order-
ing rules, the geometry of tangencies of the forward and
backward foliations places a restriction on the allowance
for all permutations of finite symbols. Since the order-
ing rule for forward sequences is the same as that of
the one-dimensional unimodal map, we only need to ex-
amine the U sequence. We consider a set of tangencies
{c;}={Q:CeX,;P;} fori=1,...,5. A symbolic sequence
U eV with Ue between Q;Re and Q;Le and at the same
time oV > X, P; must be forbidden by the tangency c;.
In the symbolic plane the sequence U e V' corresponds to
a point inside the forbidden zone of the tangency c;. If

I

the shift of a sequence -+ sg_28,_1 ® SpSk41 - - - satisfies
the condition that the backward sequence - --sj_25,_1®
is not between Q;Re and Q;Le and at the same time
oX,P, > ®sySky1 -+, then this shift is not forbidden by
the tangency c;. Owing to the property of well-ordered
foliations, the shift must not be forbidden by any tangen-
cies. Thus we may say that the shift is allowed according
to the tangency. A necessary and sufficient condition for
a sequence to become an allowed one is that all of its
shifts are allowed according to the set of tangencies.

To check the admissibility condition from the set of
tangencies, we can draw points representing real se-
quences generated from the delay Poincaré map in the
symbolic plane in Fig. 3(a). The fundamental forbidden
zone contains no point of the allowed sequences. It shows
that the determined partition line and grammatical rules
are effective.

In Fig. 2 the following tangency points are identified
on the partition line Ce, for ¢y, c2, c3, ¢4, and cs, respec-
tively:

---LRRRLRLRLRRRR|RLRRLRCe RLRLRLRRRLRLR|LRRRLRR---,
--+RRLRRLRR|RLRLRLRRRLRCe RLRRRLRLRLRRRLR|LRLRR.-- ,
---L|RRRRLRRLRLRRLRLRRRCe RLRRRRLRRLRLR|RRRLRLR---
---RLRRRRRRRRLR|LRRRRRRCe RLRRLRLRRLRRRR|LRRRRL---
-+ RLRRLRLRLRLR|RRLRLRRCe RLRRLRRLRLR|LRLRLRRRL--- ,

where the symbolic sequences between two delimiters |
are the same as those in the model given in Ref. [16]. We
have used them to examine possible orbits in the U se-
quence up to order 9. The results of symbolic sequences

not greater than RLR are given in Table I. We see
that the symbolic sequences RLR*LRX, RLR?LRLRX,
RLR2LRX, and RLR?LR3*X are forbidden, i.e., there
are no corresponding periodic orbits in the phase space.

TABLE I. Admissibility of the periodic sequences not greater than RLR and up to period 9 from the time series. Here X in
a sequence stands for L or R. Only nonrepeating strings of the sequences are given. If the kth shift of the periodic sequence
P e P* is allowed or forbidden by a tangency T, we write the upper criterion as k7.

Sequence Period Admissibility Upper criterion Lower criterion

R 1 allowed Ocy Ocq

RL 2 allowed Ocilcy Oczlés

RLRR 4 allowed Oc21c12¢13cq Oczléz2c33cs
RLRRRLRL 8 allowed Ocslci2¢13c14c25¢16¢17cy 0c41C32¢33¢34c35E56¢37¢3
RLRRRL 6 undetermined 0c31€32c23C24c35¢C3
RLRRRR 6 undetermined 0c31E32c43E44c25C2
RLRRRRRL 8 allowed Oc3zlci2c13c14c¢15¢16¢17cy 0c41€42c23824¢35E36¢c37C3
RLRRRRRR 8 allowed 0c3zlc12¢13c14¢15¢16¢17cy 0c41E42c43¢44c25E36¢37C3
RLRRRRRRR 9 allowed Ocslci2c¢13c14¢15¢16¢17¢18¢ 0c51C52c43C44c25E26c37838¢4
RLRRRRRRL 9 allowed Oc3zlci12c13c14¢15¢16¢17¢18¢ 0c41C42c33E24¢45C36C37C38¢4
RLRRRRR 7 allowed Oczleci2c13c14c15¢16¢ Ocs1cs2c33C54c25E26¢3
RLRRRRL 7 allowed Ocszlci2c¢13ci14c15¢16¢, Ocs1¢52¢33C34c35836¢3
RLRRRRLRX 9 forbidden Oc2

RLRRR 5 allowed Oczleci2c¢13c14c, 1c32c23¢Es54c3
RLRRL 5 undetermined Ocs1€52c23¢24c3
RLRRLRLRX 9 forbidden Ocs

RLRRLRX 7 forbidden Ocs

RLRRLRRRX 9 forbidden Ocs

RLRRLRRR 8 allowed Ocslci2c¢13c44c15¢16¢17ca 1lca2cs3¢E54c2Tc
RLRRLRRL 8 allowed Ocs1lci12¢13ca4c15¢16¢17cy 2c23¢24c35¢5Tco
RLR 3 undetermined lco
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Moreover, we see that symbolic sequence RLR?L, which
is determined as being allowed, as given in Table III of
Ref. [16], cannot be determined by the tangency points.
It comes from the difference between symbolic sequences
of the tangency points from the time series and those
for the dynamical model. Thus symbolic dynamics from
the time series can display the dynamical behavior of the
model at the finite level of accuracy.

Consequently, we have determined grammatical rules
and established symbolic dynamics from chaotic time se-
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FIG. 3. (a) Fundamental and forward forbidden zones in
the symbolic plane according to the ordering rules (3) and
(4). The points representing real orbits generated from time
series are also shown. (b) Fundamental forbidden zone in the
symbolic plane according to the ordering rules (3) and (5).

ries with a driven frequency. The symbolic dynamics is
consistent with that of the model at a finite level of ac-
curacy. -

III. APPLICATION OF SYMBOLIC DYNAMICS

A. Finding unstable periodic orbits

After the symbolic dynamics from the time series is
established, we display the global systematics of periodic
orbits within the strange attractor and find unstable pe-
riodic orbits. For convenience, we define the direction
from c; to cs along the partition line Ce as the lower
reach direction and the opposite direction as the upper
reach direction.

First, for each allowed symbolic sequence, we can de-
termine two backward foliations, between which the pe-
riodic point encoded by the symbolic sequence exists. In
Table I we give the upper criterion for each allowed sym-
bolic sequence, i.e., the periodic point encoded by the
symbolic sequence exists at the lower reach of the back-
ward foliation passing through the tangency. We can
also determine the lower criterion for the symbolic se-
quence, i.e., the periodic point encoded by the symbolic
sequence exists at the upper reach of the backward foli-
ation passing through the tangency. For the set of tan-
gencies {c;}={Q;C e X, P;}, if the shift of a sequence
©++Skp_25k—1 ® SkSk41 - - - satisfies the condition that the
backward sequence - --si_o2s;_1@ is between Q;Re and
QiLe and at the same time eX;P;, > esysiy;---, then
the point encoded by this shift exists at the upper reach
of the backward foliation passing through the tangency
¢;. In order to determine the lower criterion for all shifts
of the allowed symbolic sequence, we need to develop
the admissibility condition for the forward map Ce=Xe
of the tangency point Ce. In the symbolic plane of Fig.
3(a), the forward forbidden zone consists of the forbidden
rectangles. Each of them is enclosed by the lines QR X e,
QLXe, oP, and eL>°. We consider the set of tangencies
{¢:}={Q.CX,eP;} fori =1,...,5. A symbolic sequence
U eV with Ue between Q;RX;e and Q;LX;e and at the
same time oV < oP; must be forbidden by the tangency
;. In the symbolic plane the sequence U eV corresponds
to a point inside the forbidden zone of the tangency ¢;.
If the shift of a sequence - - - sp_25,_1 05,5k 1 - - - satisfies
the condition that the backward sequence - - - s;_o5,_1®
is not between Q; RX;e and Q;LX;e and at the same time
oF; < ®5kSk41 - -+, then this shift is not forbidden by the
tangency ¢;. Owing to the property of well-ordered folia-
tions, the shift must be not forbidden by any tangencies.
Thus we may say that the shift is allowed according to
the tangency. A necessary and sufficient condition for a
sequence to become an allowed one is that all of its shifts
are allowed according to the set of tangencies. Moreover,
if the shift of a sequence -« s _251_1®55,41 - - - satisfies
the condition that the backward sequence ---s,_25;,_1®
is between Q;RX;e and Q;LX;e and at the same time
oP; < 515,41 -, then the point encoded by this shifted
symbolic sequence exists at the upper reach of the back-
ward foliation passing through the tangency ¢. Thus we
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may say that the lower criterion of the shifted symbolic
sequence is the tangency ¢;. The result of the lower crite-
rion for all nonforbidden symbolic sequences is also shown
in Table I. So, according to the upper and lower criteria,
i.e., the upper and lower reach backward foliations, we
can obtain a coarse-grained distribution of the periodic
points. For example, the point of the symbolic sequence
R exists between its upper reach backward foliation c¢;
and lower reach backward foliation c4.

Second, the ordering for the forward sequences coin-
cides with the distribution of periodic points along the
backward foliations. Thus, after the distribution of each
allowed symbolic sequence between the backward folia-
tions is obtained, we can determine further a local region
for the periodic point encoded by the symbolic sequence
in terms of the stable eigenvectors at another two pe-
riodic points near the backward foliations. The bound-
ary of the local region consists of the stable eigenvectors,
the backward foliations. For example, the symbolic se-
quences RLR®L and RLR*L exist between the symbolic
sequences RLR3®L and RLR2LR?L according to the or-
dering rule for forward sequences. The points of Le RLR®
and Le RLR* exist between the backward foliations pass-
ing through tangencies c¢3 and c5. Thus we can deter-
mine that the points of symbolic sequences L e RLR®
and L ¢ RLR* exist in a local region that consists of
the stable eigenvectors at the periodic points encoded by
L e RLR?® and L ¢ RLR?LR?, and backward foliations
passing through tangencies ¢z and c¢s, as shown in the
region of part L of Fig. 2.

Third, the distribution of the forward and backward
foliations in the strange attractor can be displayed ap-
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FIG. 4. Strange attractor with all points of two periodic
orbits RLR?L and RLR?>LR?L and the last point X with
five points of its forward orbit in the delay Poincaré section
[y(t),y(t + 7); T/10].

proximately by that of the stable and unstable eigenvec-
tors at each periodic point. For example, the symbolic
sequence Re RLR® exists between Re RLR® and Re RLR*
according to the ordering rules for forward and backward
sequences; this allows us to determine that the periodic
point encoded by the symbolic sequence Re RLR® exists
in a square that consists of stable and unstable eigenvec-
tors at the periodic points encoded by symbolic sequences
Re RLR? and R e RLR*, as shown in the region of part
R of Fig. 2.

After the global systematics of periodic orbits within
the strange attractor is obtained by establishing symbolic
dynamics, we can apply symbolic dynamics to find differ-
ent periodic orbits. From Table I, it is easy to know that
the symbolic sequence Re RLR® exists between the back-
ward foliations ¢3 and cs and in a square that consists
of the stable and unstable eigenvectors at the periodic
points encoded by R e RLR® and R ¢ RLR*. From the
initial local square, we find the periodic orbit RLR” us-
ing the method of close returns. In the same way, we
also find the periodic orbit RLR®L. Therefore, we have
displayed the global systematics of periodic orbits within
the strange attractor and applied the symbolic dynamics
to find unstable periodic orbits.

B. Predicting chaotic time series and symbolic
sequences

The strange attractor is referred to as the closure of
the union of unstable periodic points. Each segment of
a chaotic orbit can be approximated by a periodic orbit.
After the global systematics of periodic orbits is found,
we can draw the last reconstructed vector in the delay
Poincaré section and find two nearest periodic points
along a backward foliation near the vector. We can also
determine that the two periodic orbits are close to the
last segment of the chaotic orbit if some symbols of the
backward sequence of the last vector is coincident with
those of the two periodic orbits. Then, according to the
two periodic orbits, we can predict a delay Poincaré map
of the vector applying symbolic dynamics. For example,
in Fig. 4 we take a segment of the reconstructed or-
bit from the time series and draw a point from it as the
last vector in the delay Poincaré section [y(t), y(t+7); ¢].
The last point is marked by X = [y(tm), y(ts + 7)]
and its backward sequence is --- R2LR*Le. The sym-
bolic sequences of the two nearest periodic points near
the backward foliation passing through the tangency c»
are L e RRLR and L e RRLRRLR, respectively. It is
easy to see that there are two backward symbols RL
in the periodic sequences that are coincident with those
for the point Xps. The delay Poincaré map X4, =
ly(tamr+1), y(tapr41+7)] of the last point exists between the
periodic points encoded by symbolic sequences Re RLRL
and R e RLRRLRL near the backward foliation pass-
ing through the tangency ¢s, i.e., a shift of L ¢ RRLR
and L e RRLRRLR, respectively. The points for sym-
bolic sequences R ¢ RLRL and R e RLRRLRL are at
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(1.86,1.22) and (2.07,0.95), respectively. Thus we ob-
tain a local region of predicted point Xpg41 and estimate
that its horizontal and vertical values are 1.86 < y(tpr41)
< 2.07 and 0.95 <y(tapr4+1+7) < 1.22, respectively. In the
same way, the points for symbolic sequences R e LRLR
and R e LRRLRLR are at (0.30,0.43) and (0.10,0.11),
respectively. Thus the coordinates of predicted point
Xtz = [Y(tm+2), y(tpr+2 + 7)) are estimated as 0.10 <
y(tm2) < 0.30 and 0.11 <y(tm42 + 7) < 0.43. Fur-
ther, again and again, we can predict more delay Poincaré
maps and approximately estimate their values. In Fig.
4 we also draw five exact points in the forward orbit of
the last point X ps. According to a comparison between
the exact and estimated values, we can determine that
the method of prediction is effective. Moreover, since
there is an instability in the strange attractor, the more
delay Poincaré maps there are, the worse accuracy the
predicted values have. But we find that the predicted
symbolic sequence RRLR agrees with the forward se-
quence of two periodic points encoded by Le RRLR and
LeRRLRRLR. Thus we can obtain a predicted symbolic
sequence with high accuracy at the finite steps. More-
over, when the initial phase ¢ is changed in a period T,
we can predict a chaotic orbit with finite accuracy and
its symbolic sequence with high accuracy. Therefore, we
have applied the symbolic dynamics to predict the time
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series with finite accuracy as well as symbolic sequences
with high accuracy.

IV. SUMMARY AND CONCLUSION

A simple method to determine a partition line from
chaotic time series with a driven frequency has been de-
vised, so that the embedded strange attractor can be
divided effectively by the partition line. After the deter-
mination of grammatical rules, symbolic dynamics has
been established from the chaotic time series. The sym-
bolic dynamics provides a global systematics of unstable
periodic orbits within the strange attractor. With the
global property, the symbolic dynamics has been applied
to find unstable periodic orbits and predict the chaotic
time series with finite accuracy and symbolic sequences
with high accuracy.
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